Abstract

Introduction: Long noncoding RNAs (lncRNAs) have been reported to be involved in the occurrence and development of various diseases. This study was to investigate the role of lncRNA-H19 in the transition from acute kidney injury (AKI) to chronic kidney disease (CKD) and its underlying mechanism. Methods: Bilateral renal pedicle ischemia-reperfusion injury (IRI) was used to establish the IRI-AKI model in C57BL/6 mice. The expression levels of lncRNA-H19, miR-196a-5p, α-SMA, collagen I, Wnt1, and β-catenin in mouse kidney tissues and fibroblasts were determined by quantitative real-time PCR and Western blotting. The degree of renal fibrosis was evaluated by hematoxylin and eosin staining. The interaction between lncRNA-H19 and miR-196a-5p was verified by bioinformatics analysis and luciferase reporter assay. Immunohistochemistry and immunofluorescence were used to evaluate the expression of α-SMA and collagen I in kidney tissues and fibroblasts of mice. Results: lncRNA-H19 is upregulated, and miR-196a-5p is downregulated in kidney tissues of IRI mice. Moreover, miR-196a-5p is a direct target of lncRNA-H19. lncRNA-H19 overexpression promotes kidney fibrosis and activates fibroblasts during AKI-CKD development, while miR-196a-5p overexpression reversed these effects in vitro. Furthermore, lncRNA-H19 overexpression significantly upregulates Wnt1 and β-catenin expression in kidney tissues and fibroblasts of IRI mice, while miR-196a-5p overexpression downregulates Wnt1 and β-catenin expression in kidney tissues and fibroblasts of IRI mice. Conclusion: lncRNA-H19 induces kidney fibrosis during AKI-CKD by regulating the miR-196a-5p/Wnt/β-catenin signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.