Abstract
Processes taking place in subduction zones are highly debated. The Cretaceous volcanic rocks are voluminously distributed along the coastal area of southeastern (SE) China. To elucidate their petrogenesis and relationship with subduction, we use new zircon U-Pb ages and Hf-O isotopes for the representative Cretaceous volcanic sequences in Zhejiang Province, China. According to stratigraphic investigations, zircon U-Pb ages, and Hf-O isotopes, these volcanic rocks can be divided into different groups corresponding to three stages of volcanic activity: the early (Stage 1, 136−129 Ma), middle (Stage 2, 125−115 Ma), and late (Stage 3, 110−94 Ma) stages. Diverse zircon populations (including antecrysts, autocrysts, and xenocrysts) are recognized. Hf-O isotopes of autocrysts suggest different protoliths for the identified three stages of volcanic activity. Xenocrysts show obvious different compositions from autocrysts. Antecrysts share similar compositions with autocrysts, which favor similarities in the magmas from which they were generated. Our observations (very small age intervals between antecrysts and autocrysts, sources for volcanic rocks throughout the entire crust, and volcanic magmatism with long-term and discontinuous characteristics), were inconsistent with the traditional melt-dominated magma chamber model. Consequently, we propose that those volcanic rocks were derived from long-lived transcrustal magmatic systems (TCMS), dominated by crystal mush, instead of melt-dominated magma chambers, maintained and recharged by a discontinuous contribution of contemporaneous underplated mantle-derived magmas, triggered by paleo-Pacific plate subduction. We suggest the different stages of volcanic activity and corresponding long-lived TCMS were produced by the change of Pacific plate motion beneath SE China during the Cretaceous period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.