Abstract

At present there are two vastly different ab initio approaches to the description of the many-body dynamics: the density functional theory (DFT) and the functional integral (path integral) approaches. On one hand, if implemented exactly, the DFT approach can allow in principle the exact evaluation of arbitrary one-body densities. However, when applied to large amplitude collective motion (LACM), this approach needs to be extended in order to accommodate the phenomenon of surface-hopping, when adiabaticity is strongly violated and the description of a system using a single (generalized) Slater determinant is not valid anymore. The functional integral approach on the other hand does not appear to have such restrictions, but its implementation does not appear to be a straightforward endeavor. However, within a functional integral approach one seems to be able to evaluate in principle any kind of observable, such as the fragment mass and energy distributions in nuclear fission. These two radically different approaches can likely be brought together by formulating a stochastic time-dependent DFT approach to many-body dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.