Abstract

Different types of neurotransmitter receptors coexist within single neurons and must be targeted to discrete synaptic regions for proper function. In chick ciliary ganglion neurons, nicotinic acetylcholine receptors (nAChRs) containing alpha 3 and alpha 5 subunits are concentrated in the postsynaptic membrane, whereas alpha-bungarotoxin receptors composed of alpha 7 subunits are localized perisynaptically and excluded from the synapse. Using retroviral vector-mediated gene transfer in vivo, we show that the long cytoplasmic loop of alpha 3 targets chimeric alpha 7 subunits to the synapse and reduces endogenous nAChR surface levels, whereas the alpha 5 loop does neither. These results show that a particular domain of one subunit targets specific receptor subtypes to the interneuronal synapse in vivo. Moreover, our findings suggest a difference in the mechanisms that govern assembly of interneuronal synapses as compared to the neuromuscular junction in vertebrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.