Biochimica et Biophysica Acta | VOL. 1863
Read

The long chain base unsaturation has a stronger impact on 1-deoxy(methyl)-sphingolipids biophysical properties than the structure of its C1 functional group.

Publication Date Aug 1, 2021

Abstract

Abstract 1-deoxy-sphingolipids, also known as atypical sphingolipids, are directly implicated in the development and progression of hereditary sensory and autonomic neuropathy type 1 and diabetes type 2. The mechanisms underlying their patho-physiological actions are yet to be elucidated. Accumulating evidence suggests that the biological actions of canonical sphingolipids are triggered by changes promoted on membrane organization and biophysical properties. However, little is known regarding the biophysical implications of atypical sphingolipids. In this study, we performed a comprehensive characterization of the effects of the naturally occurring 1-deoxy-dihydroceramide, 1-deoxy-ceramideΔ14Z and 1-deoxymethyl-ceramideΔ3E in the properties of a fluid membrane. In addition, to better define which structural features determine sphingolipid ability to form ordered domains, the synthetic 1-O-methyl-ceramideΔ4E and 1-deoxy-ceramideΔ4E were also studied. Our results show that natural and synthetic 1-deoxy(methyl)-sphingolipids fail to laterally segregate into ordered domains as efficiently as the canonical C16-ceramide. The impaired ability of atypical sphingolipids to form ordered domains was more dependent on the presence, position, and configuration of the sphingoid base double bond than on the structure of its C1 functional group, due to packing constraints introduced by an unsaturated backbone. Nonetheless, absence of a hydrogen bond donor and acceptor group at the C1 position strongly reduced the capacity of atypical sphing...

Concepts

Hereditary Sensory And Autonomic Neuropathy Sphingoid Base Double 1-deoxy-sphingolipids Autonomic Neuropathy Type Biophysical Atypical Sphingolipids Long Chain Base Biophysical Properties Unsaturated Backbone

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 19, 2022 to Sep 25, 2022

R DiscoverySep 26, 2022
R DiscoveryArticles Included:  5

Disaster Prevention and Management ISSN: 0965-3562 Article publication date: 20 September 2022 This paper applies the theory of cascading, interconnec...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.