Abstract

Dynamic contrast enhanced ultrasound (DCE-US) is evolving as a promising tool to noninvasively quantify relative tissue perfusion in organs and solid tumours. Quantification using the method of disruption replenishment is best performed using a model that accurately describes the replenishment of microbubble contrast agents through the ultrasound imaging plane. In this study, the lognormal perfusion model was validated using an exposed in vivo rabbit kidney model. Compared against an implanted transit time flow meter, longitudinal relative flow measurement was (×3) less variable and correlated better when quantification was performed with the lognormal perfusion model (Spearman r = 0.90, 95% confidence interval [CI] = 0.05) vs. the prevailing mono-exponential model (Spearman r = 0.54, 95% CI = 0.18). Disruption-replenishment measurements using the lognormal perfusion model were reproducible in vivo to within 12%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call