Abstract

AbstractQuantum Monte Carlo data are often afflicted with distributions that resemble lognormal probability distributions and consequently their statistical analysis cannot be based on simple Gaussian assumptions. To this extent a method is introduced to estimate these distributions and thus give better estimates to errors associated with them. This method entails reconstructing the probability distribution of a set of data, with given mean and variance, that has been assumed to be lognormal prior to undergoing a blocking or renormalization transformation. In doing so, we perform a numerical evaluation of the renormalized sum of lognormal random variables. This technique is applied to a simple quantum model utilizing the single-thread Monte Carlo algorithm to estimate the ground state energy or dominant eigenvalue of a Hamiltonian matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.