Abstract

Category theory gives a mathematical characterization of naturality but not of canonicity. The purpose of this paper is to develop the logical theory of canonical maps based on the broader demonstration that the dual notions of elements & distinctions are the basic analytical concepts needed to unpack and analyze morphisms, duality, canonicity, and universal constructions in Sets, the category of sets and functions. The analysis extends directly to other Sets-based concrete categories (groups, rings, vector spaces, etc.). Elements and distinctions are the building blocks of the two dual logics, the Boolean logic of subsets and the logic of partitions. The partial orders (inclusion and refinement) in the lattices for the dual logics define morphisms. The thesis is that the maps that are canonical in Sets are the ones that are defined (given the data of the situation) by these two logical partial orders and by the compositions of those maps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.