Abstract

The notion of a compositional language of thought (LOT) has been central in computational accounts of cognition from earliest attempts (Boole, 1854; Fodor, 1975) to the present day (Feldman, 2000; Penn, Holyoak, & Povinelli, 2008; Fodor, 2008; Kemp, 2012; Goodman, Tenenbaum, & Gerstenberg, 2015). Recent modeling work shows how statistical inferences over compositionally structured hypothesis spaces might explain learning and development across a variety of domains. However, the primitive components of such representations are typically assumed a priori by modelers and theoreticians rather than determined empirically. We show how different sets of LOT primitives, embedded in a psychologically realistic approximate Bayesian inference framework, systematically predict distinct learning curves in rule-based concept learning experiments. We use this feature of LOT models to design a set of large-scale concept learning experiments that can determine the most likely primitives for psychological concepts involving Boolean connectives and quantification. Subjects' inferences are most consistent with a rich (nonminimal) set of Boolean operations, including first-order, but not second-order, quantification. Our results more generally show how specific LOT theories can be distinguished empirically. (PsycINFO Database Record

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.