Abstract

Natural language does not express all connectives definable in classical logic as simple lexical items. Coordination in English is expressed by conjunction and, disjunction or, and negated disjunction nor. Other languages pattern similarly. Non-lexicalized connectives are typically expressed compositionally: in English, negated conjunction is typically expressed by combining negation and conjunction (not both). This is surprising: if wedge and vee are duals, and the negation of the latter can be expressed lexically (nor), why not the negation of the former? I present a two-tiered model of the semantics of the binary connectives. The first tier captures the expressive power of the lexicon: it is a bilateral state-based semantics that, under a restriction, can express all and only the distinctions that can be expressed by the lexicon of natural language (and, or, nor). This first tier is characterized by rejection as non-assertion and a Neglect Zero assumption. The second tier is obtained by dropping the Neglect Zero assumption and enforcing a stronger notion of rejection, thereby recovering classical logic and thus definitions for all Boolean connectives. On the two-tiered model, we distinguish the limited expressive resources of the lexicon and the greater combinatorial expressive power of the language as a whole. This gives us a logic-based account of compositionality for the Boolean fragment of the language.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.