Abstract

We study the logarithmic growth of an element of the Robba ring which satisfies a Frobenius equation over the bounded Robba ring. Chiarellotto and Tsuzuki computed the logarithmic growth of analytic functions on the open unit disc with coefficients in a $p$-adic local field which satisfy Frobenius equations over bounded functions of rank 2. We extend their result by replacing those functions by elements of the Robba ring which satisfy Frobenius equations over the bounded Robba ring. Moreover, we will see, in special cases, the zeros of these functions have some cyclicity and the logarithmic growth can be computed by the zeros of these function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.