Abstract

The Low Frequency Array (LOFAR) is an ideal instrument to conduct deep extragalactic surveys. It has a large field of view and is sensitive to large-scale and compact emission. It is, however, very challenging to synthesize thermal noise limited maps at full resolution, mainly because of the complexity of the low-frequency sky and the direction dependent effects (phased array beams and ionosphere). In this first paper of a series, we present a new calibration and imaging pipeline that aims at producing high fidelity, high dynamic range images with LOFAR High Band Antenna data, while being computationally efficient and robust against the absorption of unmodeled radio emission. We apply this calibration and imaging strategy to synthesize deep images of the Boötes and Lockman Hole fields at ~150 MHz, totaling ~80 and ~100 h of integration, respectively, and reaching unprecedented noise levels at these low frequencies of ≲30 and ≲23μJy beam−1in the inner ~3 deg2. This approach is also being used to reduce the LOTSS-wide data for the second data release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.