Abstract

Loess is an aeolian deposit consisting of predominantly silt-sized quartz particles, and containing variable amounts of clay-sized minerals. Loess is generally classified as a water-softening material, because upon wetting the loess fabric rapidly weakens or collapses. The strain hardening of Malan loess and the brittle failure of Lishi and Wucheng loess are in strong contrast to the failure behaviour of these loess deposits in a remoulded state. From tests carried out on samples with varying moisture contents, using a modified Bromhead ring shear apparatus, it was found that the effective apparent cohesion gradually increases and the effective internal friction angle decreases with an increase in moisture content. When the moisture content reaches a material-specific threshold, the effective cohesion decreases rapidly and the effective internal friction angle stabilises at a residual value. The frequent failure of loess slopes in the western part of the Chinese Loess Plateau is closely related to progressive weathering along zones in these slopes, which causes a dramatic decrease in strength from the peak strength condition. Progressive weathering is common in the loess slopes in the western part of the Chinese Loess Plateau. During the process shear strength reduction along potential slip surfaces may be achieved by leaching of readily soluble salts, destruction of cementation bonds, and redistribution of particles. Localized collapse of the loess fabric causes internal deformation and consequently peak strength conditions are concentrated on a progressively smaller area of the failure plane. Therefore, the mode of failure of loess slopes is generally determined by brittle failure of the undisturbed, and unweathered, central parts of the slopes. It is important that both the weathered and unweathered strength of the loessmaterials in this area be established in order to analyze the stability of existing loessslopes, many of which are steepand lie directly above domestic and industrial urban areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call