Abstract

How general anesthesia causes loss of consciousness has been a mystery for decades. It is generally thought that arousal-related brain nuclei, including the locus coeruleus (LC), are involved. Here, by monitoring locomotion behaviors and neural activities, we developed a larval zebrafish model for studying general anesthesia induced by propofol and etomidate, two commonly used intravenous anesthetics. Local lesion of LC neurons via two-photon laser-based ablation or genetic depletion of norepinephrine (NE; a neuromodulator released by LC neurons) via CRISPR/Cas9-based mutation of dopamine-β-hydroxylase (dbh) accelerates induction into and retards emergence from general anesthesia. Mechanistically, invivo whole-cell recording revealed that both anesthetics suppress LC neurons' activity through a cooperative mechanism, inhibiting presynaptic excitatory inputs and inducing GABAA receptor-mediated hyperpolarization of these neurons. Thus, our study indicates that the LC-NE system plays a modulatory role in both induction of and emergence from intravenous general anesthesia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.