Abstract

In Comamonas sp. strain JS46, 3-nitrobenzoate (3Nba) is initially oxidized at the 3,4 position by a dioxygenase, which results in release of nitrite and production of protocatechuate. The locus coding for the 3Nba dioxygenase (designated mnb, for m-nitrobenzoate) was mobilized from strain JS46 using a plasmid capture method, cloned, and sequenced. The 3Nba dioxygenase (MnbA) is a member of the phthalate family of aromatic oxygenases. An open reading frame designated mnbB that codes for an NAD(P)H-dependent class IA aromatic oxidoreductase is downstream of mnbA. MnbB is tentatively identified as the oxidoreductase that transfers reducing equivalents to MnbA in strain JS46. The mnb locus is flanked by IS1071 elements. The upstream element is interrupted by a novel insertion sequence designated ISCsp1, and the transposase genes of the flanking insertion elements are transcribed in the direction opposite the direction of mnbA transcription. Spontaneous deletion of mnb occurs because of homologous recombination between the directly repeated flanking IS1071 elements. In addition, in approximately 0.007 to 0.2% of any population of JS46 cells growing on 3Nba, alternative orientations of mnb relative to the flanking IS1071 elements are detected. These alternative forms are the result of inversions of mnb and the flanking IS1071 elements. Inversions appear to occur because of homologous recombination between the inverted repeats that flank the IS1071 elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.