Abstract

It is known that the maximum classical mutual information that can be achieved between measurements on a pair of quantum systems can drastically underestimate the quantum mutual information between those systems. In this article, we quantify this distinction between classical and quantum information by demonstrating that after removing a logarithmic-sized quantum system from one half of a pair of perfectly correlated bitstrings, even the most sensitive pair of measurements might only yield outcomes essentially independent of each other. This effect is a form of information locking but the definition we use is strictly stronger than those used previously. Moreover, we find that this property is generic, in the sense that it occurs when removing a random subsystem. As such, the effect might be relevant to statistical mechanics or black hole physics. Previous work on information locking had always assumed a uniform message. In this article, we assume only a min-entropy bound on the message and also explore the effect of entanglement. We find that classical information is strongly locked almost until it can be completely decoded. As a cryptographic application of these results, we exhibit a quantum key distribution protocol that is secure if the eavesdropper's information about the secret key is measured using the accessible information but in which leakage of even a logarithmic number of key bits compromises the secrecy of all the others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.