Abstract
Car-sharing, electrification, and autonomous driving are greatly revolutionizing the future of the transportation system. This study proposes a location routing problem for the car-sharing system with autonomous electric vehicles to determine optimal station location and vehicle routing, where each station is both a depot and a charging station. A mathematical model is formulated and then extended to three variants, while simultaneously considering different recharging and service options. The proposed mixed-integer nonlinear models are separately solved by general algebraic modeling system (GAMS) and genetic algorithm (GA), and the efficiency of the GA is demonstrated. The comparative experimental results of instances are presented, and the benefits of allowing partial recharge are obtained. More significant savings in cost can be achieved if partial service is simultaneously allowed. Furthermore, the trade-off between the operator’s interests and the interests of users, as well as the operator’s immediate profits and future profits, are explored through sensitivity analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.