Abstract

In 2D-multielectrode electrical surveys using the pole–pole array, the distance to `infinite electrodes' is actually finite. As a matter of fact, the available cable length generally imposes a poor approximation of theoretical location of these electrodes at infinity. This study shows that in most of the cases, the resulting apparent resistivity pseudosection is strongly distorted. Numerical simulation validated by field test also shows that a particular finite array provides results that are as close as possible to the ones of the ideal pole–pole array. This is achieved when two conditions that are weaker than an infinite location are fulfilled: (i) the `infinite electrodes' are placed symmetrically on both sides of the in-line electrodes with a spread angle of 30° and (ii) the length of `infinite lines' is at least 20 times the greatest distance between in-line electrodes. The electrical 2D image obtained with this enhanced array is the least distorted one with respect to the pole–pole image. The apparent resistivities are generally underestimated, but this deviation is almost homogeneous. Though the shift cannot be determined a priori, the interpretation of such an image with direct or inverse software designed for pole–pole data provides an accurate interpretation of the ground geometry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.