Abstract

O-linked glycosylation is a post-translational and post-folding event involving exposed S/T residues at beta-turns or in regions with extended conformation. O-linked sites are difficult to predict from sequence analyses compared to N-linked sites. Here we compare the results of chemical analyses of isolated glycopeptides with the prediction using the neural network prediction method NetOGlyc3.1, a procedure that has been reported to correctly predict 76% of O-glycosylated residues in proteins. Using the heavily glycosylated human insulin receptor as the test protein six sites of mucin-type O-glycosylation were found at residues T744, T749, S757, S758, T759, and T763 compared to the three sites (T759 and T763- correctly, T756- incorrectly) predicted by the neural network method. These six sites occur in a 20 residue segment that begins nine residues downstream from the start of the insulin receptor beta-chain. This region which also includes N-linked glycosylation sites at N742 and N755, is predicted to lack secondary structure and is followed by residues 765-770, the known linear epitope for the monoclonal antibody 18-44.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call