Abstract
It is well known that the Curse of Dimensionality causes the standard Kernel Density Estimator to break down quickly as the number of variables increases. In non-parametric regression, this effect is relieved in various ways, for example by assuming additivity or some other simplifying structure on the interaction between variables. This paper presents the Locally Gaussian Density Estimator (LGDE), which introduces a similar idea to the problem of density estimation. The LGDE is a new method for the non-parametric estimation of multivariate probability density functions. It is based on preliminary transformations of the marginal observation vectors towards standard normality, and a simplified local likelihood fit of the resulting distribution with standard normal marginals. The LGDE is introduced, and asymptotic theory is derived. In particular, it is shown that the LGDE converges at a speed that does not depend on the dimension. Examples using real and simulated data confirm that the new estimator performs very well on finite sample sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.