Abstract

Locally connected Grothendieck toposes are shown to be coreflective in Grothendieck toposes. We refer to this coreflection as locally connected coclosure. The locally connected coclosure of a localic topos is localic. A topos and its locally connected coclosure are seen to have equivalent categories of Lawvere distributions. A class of locales is produced whose locally connected coclosures are trivial. We show how the locally connected coclosure can be described in terms of the locally connected coclosure of a localic cover.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.