Abstract

An evolution equation of a curve is constructed by summing up the infinite sequence of commuting vector fields of the integrable hierarchy for the localized induction equation (LIE). It is shown to be equivalent to the Lund - Regge equation. The intrinsic equations governing the curvature and torsion are deduced in the form of integrodifferential evolution equations. A class of exact solutions which correspond to the permanent forms of a curve evolving by a steady rigid motion are presented. The analysis of the solutions reveals that, given the shape, there are two speeds of motion, one of which has no counterpart in the case of the LIE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.