Abstract
AbstractUsing a series of combined compression–simple-shear experiments, it has been possible to investigate strain distributions and crystal-orientation fabrics related to varying layer orientation in ice. A variety of flattening strains accompanied by layer buckling, simple shear and the development of a lenticular layering are produced in anisotropic ice masses. In samples where the creep curve has only just reached a minimum strain rate, the c-axis preferred orientation is similar to that in the starting material, with specific c-axis concentrations affected by the extent of preserved host grains. At shear strains where γ ≤ 1, it was found that the c-axis preferred orientations were highly variable depending on the magnitude of strain, strain distribution and upon the modification and degree of rotation of initial c-axis preferred orientation. However, once recrystallization dominates in high-strain zones (γ ≥ 1), there is a rapid development of an asymmetric two-maxima fabric with little evidence of any contributions from inherited fabric elements. The final c-axis pattern is asymmetric with respect to the direction of shortening, with a strong maximum at ∼80° to the shear zone, with a sense of asymmetry in the direction of the shear, and a secondary maximum lying at ∼50° to the plane of shearing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.