Abstract

We review recent results concerning the localization of gapped periodic systems of independent fermions, as, e.g., electrons in Chern and Quantum Hall insulators. We show that there is a “localization dichotomy” which shows some analogies with phase transitions in Statistical Mechanics: either there exists a system of exponentially localized composite Wannier functions for the Fermi projector, or any possible system of composite Wannier functions yields a diverging expectation value for the squared position operator. This fact is largely model-independent, covering both tight-binding and continuous models. The results are discussed with emphasis on the main ideas and the broader context, avoiding most of the technical details.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.