Abstract

There is general acceptance that the estrogen receptor can act as a transcription factor. However, estrogens can also bind to receptors that are located at the plasma membrane and stimulate rapid intracellular signaling processes. We recently showed that a membrane-associated estrogen receptor (mER) is present within myelin and at the oligodendrocyte (OL) plasma membrane. To understand the physiological function of mER in OLs, we investigated its cellular localization and involvement in rapid signaling in CG4 cells and OL primary cultures. An ERalpha was expressed along the lacy network of veins in the membrane sheets and in the perikaryon and nucleus in OLs. ERbeta was located in the nucleus, and to a lesser extent along the veins. The expression of ERalpha and ERbeta in OL membranes was confirmed by Western analysis of isolated membranes. OL membranes mainly had truncated forms of ERalpha, 53 and 50 kDa, in addition to some 65 kDa form, whereas ERbeta was a 54 kDa form. CG4 cells and OLs were pulsed with 17alpha- and 17beta-estradiol for various times and the total lysates were analyzed for phosphorylated kinases. Both 17alpha- and 17beta-estradiol elicited rapid phosphorylation of p42/44MAPK, Akt, and GSK-3beta within 8 min. This rapid signaling is consistent with estradiol ligation of a membrane form of ER. Since 17alpha-estradiol is produced at higher concentrations than 17beta-estradiol in the brain of both sexes, signaling via 17alpha-estradiol-liganded mER may have an important function in OLs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.