Abstract

A locally finite face-to-face tiling $\cal T$ of euclidean $d$-space ${\Bbb E}^d$ is monotypic if each tile of $\cal T$ is a convex polytope combinatorially equivalent to a given polytope, the combinatorial prototile of $\cal T$. The paper describes a local characterization of combinatorial tile-transitivity of monotypic tilings in ${\Bbb E}^d$; the result is the Local Theorem for Monotypic Tilings. The characterization is expressed in terms of combinatorial symmetry properties of large enough neighborhood complexes of tiles. The theorem sits between the Local Theorem for Tilings, which describes a local characterization of isohedrality (tile-transitivity) of monohedral tilings (with a single isometric prototile) in ${\Bbb E}^d$, and the Extension Theorem, which gives a criterion for a finite monohedral complex of polytopes to be extendable to a global isohedral tiling of space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.