Abstract

Let $p$ be a prime, $G$ a finite $\mathcal{K}_p$-group, $S$ a Sylow $p$-subgroup of $G$ and $Q$ be a large subgroup of $G$ in $S$. The aim of the Local Structure Theorem is to provide structural information about subgroups $L$ with $S \leq L$, $O_p(L) \not= 1$ and $L \not\leq N_G(Q)$. There is, however, one configuration where no structural information about $L$ can be given using the methods in the proof of the Local Structure Theorem. In this paper we show that for $p=2$ this hypothetical configuration cannot occur. We anticipate that our theorem will be used in the programme to revise the classification of the finite simple groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.