Abstract

The rotation patterns of the 133Cs (I=7/2) nuclear magnetic resonance (NMR) in a Cs 2ZnCl 4 single crystal grown by using the slow evaporation method were measured in two mutually perpendicular crystal planes. Two different groups of Cs resonances were recorded; this result points to the existence of two types of crystallographically inequivalent Cs(I) and Cs(II). The angular dependences of the NMR spectra led to different values for the quadrupole coupling constants and asymmetry parameters: e 2 qQ/ h=148 kHz and η=0.11 for the Cs(I) ion, and e 2 qQ/ h=274 kHz and η=0.66 for the Cs(II) ion. The EFG tensors of Cs(I) and Cs(II) are asymmetric, and the orientations of the principal axes of the EFG tensors do not coincide. Only, the principal Y-axes of the EFG tensors coincide for the Cs(I) and Cs(II) sites. The Cs(I) ion is surrounded by 11 chlorine ions, making it rather free and high in symmetry. The Cs(II) ion has only nine neighbors and seems to be more tight than the Cs(I) ion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.