Abstract
Transmission electron microscopy (TEM) coupled with electron energy loss spectroscopy (EELS), and first principles calculations of EEL spectra were utilized to elucidate the relationship between the microscopic structure and the electrochemical properties of heavily boron-doped diamond (h-BDD). The electrochemical properties of h-BDD containing 1 at.% and 3 at.% boron are very different. TEM observations showed that 1 at.% h-BDD consists of small densely packed diamond crystallites, while 3 at.% h-BDD contains small voids and a graphite phase partly along the grain boundaries. The EEL spectrum of the grain interior in 1 at.% h-BDD and comparison of this with a theoretical spectrum shows that the boron atoms are mostly dispersed as single isolated substitutional atoms on diamond lattice sites in the grain interior and that only a small amount of sp2-bonded carbon is present. In contrast, in the grain interior of 3 at.% h-BDD, the boron atoms are mostly associated with nearest neighbor boron pairs, and consequently sp2-bonded carbon is formed. Thus, the local structure has a significant effect on the amount of sp2-bonded carbon. The quite different electrochemical properties of the samples are ascribed to the amount of sp2-bonding arising from the different local structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.