Abstract
Abstract We consider orbits of compact linear operators in a real Banach space which are nonnegative with respect to the partial ordering induced by a given cone. The main result shows that under a mild additional assumption the local spectral radius of a nonnegative orbit is an eigenvalue of the operator with a positive eigenvector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.