Abstract

An atrial tachyarrhythmias is predominantly triggered by a proarrhythmic activity originate from the pulmonary veins (PV) myocardial sleeves; sympathetic or adrenergic stimulation facilitates PV proarrhythmia. In the present study the electrophysiological inhomogeneity, spatiotemporal characteristics of the adrenergically induced ectopic firing and sympathetic nerves distribution have been investigated in a murine PV myocardium to clarify mechanisms of adrenergic PV ectopy. Electrically paced murine PV demonstrate atrial-like pattern of conduction and atrial-like action potentials (AP) with longest duration in the mouth of PV. The application of norepinephrine (NE), agonists of α- and β-adrenergic receptors (ARs) or intracardiac nerves stimulation induced spontaneous AP in a form of periodical bursts or continuous firing. NE- or ARs agonists-induced SAP originated from unifocal ectopic foci with predominant localization in the region surrounding PV mouth, but not in the distal portions of a murine PV myocardium. A higher level of catecholamine content and catecholamine fiber network density was revealed in the PV myocardial sleeves relative to LA appendage. However, no significant local variation of catecholamine content and fiber density was observed in the murine PV. In conclusion, PV mouth region appear to be a most susceptible to adrenergic proarrhythmia in mice. Intrinsic spatial heterogeneity of AP duration can be considered as a factor influencing localization of the ectopic foci in PV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call