Abstract
The continuous time Markov process considered in this paper belongs to a class of population models with linear growth and catastrophes. There, the catastrophes happen at the arrival times of a Poisson process, and at each catastrophe time, a randomly selected portion of the population is eliminated. For this population process, we derive an asymptotic upper bound for the maximum value and prove the local large deviation principle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.