Abstract

We consider two natural problems arising in geometry which are equivalent to the local solvability of specific equations of Monge-Ampère type. These two problems are: the local isometric embedding problem for two-dimensional Riemannian manifolds, and the problem of locally prescribed Gaussian curvature for surfaces in $\mathbb{R}^3$. We prove a general local existence result for a large class of Monge-Ampère equations in the plane, and obtain as corollaries the existence of regular solutions to both problems, in the case that the Gaussian curvature vanishes to arbitrary finite order on a single smooth curve.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call