Abstract

We generalise the even local index formula of Connes and Moscovici to the case of spectral triples for a * -subalgebra A of a general semifinite von Neumann algebra. The proof is a variant of that for the odd case which appears in Part I. To allow for algebras with a non-trivial centre we have to establish a theory of unbounded Fredholm operators in a general semifinite von Neumann algebra and in particular prove a generalised McKean–Singer formula.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.