Abstract
We investigate local and global properties of timelike geodesics in three static spherically symmetric spacetimes. These properties are of its own mathematical relevance and provide a solution of the physical `twin paradox' problem. The latter means that we focus our studies on the search of the longest timelike geodesics between two given points. Due to problems with solving the geodesic deviation equation we restrict our investigations to radial and circular (if exist) geodesics. On these curves we find general Jacobi vector fields, determine by means of them sequences of conjugate points and with the aid of the comoving coordinate system and the spherical symmetry we determine the cut points. These notions identify segments of radial and circular gepdesics which are locally or globally of maximal length. In de Sitter spacetime all geodesics are globally maximal. In CAdS and Bertotti--Robinson spacetimes the radial geodesics which infinitely many times oscillate between antipodal points in the space contain infinite number of equally separated conjugate points and there are no other cut points. Yet in these two spacetimes each outgoing or ingoing radial geodesic which does not cross the centre is globally of maximal length. Circular geodesics exist only in CAdS spacetime and contain an infinite sequence of equally separated conjugate points. The geodesic curves which intersect the circular ones at these points may either belong to the two-surface $\theta=\pi/2$ or lie outside it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.