Abstract

Liquid marbles and particle rafts are liquid interfaces covered with tiny particles, which are accompanied with many exotic behaviors. This study seeks to extend our understanding on the load-bearing ability of a particle raft under the transverse compression of a slender rod. At first, the interface morphologies of the particle raft and water are captured and compared with each other. Then the load-distance curves of the particle raft and water surface are measured using a self-developed device. For the particle raft, the hydrophobicity of the rod almost does not affect the interface morphology and the supporting load. To address the mechanism of this phenomenon, we perform the experiment and find that the surface tension of the particle raft is almost the same as that of water, but the equivalent contact angle of the rod attached to the particles is greatly enhanced. Finally, the model of an axisymmetrical rod pressing liquid is built, and the numerical result is in excellent agreement with the experimental data. These analyses may be beneficial to the measurement of mechanical behaviors for soft interfaces, separation of oil and water, flotation in minerals, and design of miniature boats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call