Abstract

Long noncoding RNAs (lncRNAs) have emerged as important regulators of cancer progression. Abnormal sialylation leads to renal cell carcinoma (RCC) malignancy. However, the mechanism by which the lncRNA maternally expressed gene 3 (MEG3) mediates RCC progression by regulating ST3Gal1 transcription and EGFR sialylation is still unrevealed. Here, we found that the expression of MEG3 was higher in adjacent tissues than in RCC tissues, as well as downregulated in RCC cell lines compared to expression in normal renal cells. The proliferation, migration and invasion of RCC cells transfected with MEG3 was decreased, whereas knockdown of MEG3 had the opposite effect. The proliferative and metastatic abilities of RCC cells in vivo were concordant with their behavior in vitroST3Gal1 expression was dysregulated in RCC and was positively correlated with MEG3 By applying bioinformatics, c-Jun (also known as JUN) was identified as a transcription factor predicted to bind the promoter of ST3Gal1, and altered MEG3 levels resulted in changes to c-Jun expression. Furthermore, ST3Gal1 modulated EGFR sialylation to inhibit EGFR phosphorylation, which affected activation of the phosphoinositide 3-kinase (PI3K)-AKT pathway. Taken together, our findings provide a novel mechanism to elucidate the role of the MEG3-ST3Gal1-EGFR axis in RCC progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call