Abstract

Mitochondria are not just the powerhouses of the cell; these 'end of function' organelles are crucial components of cellular physiology and influence many central metabolic and signaling pathways that support complex multicellular life. Not surprisingly, these organelles play vital roles in adaptations for extreme survival strategies including hibernation and freeze tolerance, both of which are united by requirements for a strong reduction and reprioritization of metabolic processes. To facilitate metabolic rate depression, adaptations of all aspects of mitochondrial function are required, including; energetics, physiology, abundance, gene regulation, and enzymatic controls. This review discusses these factors with a focus on the stress-specific nature of mitochondrial genes and transcriptional regulators, and processes including apoptosis and chaperone protein responses. We also analyze the regulation of glutamate dehydrogenase and pyruvate dehydrogenase, central mitochondrial enzymes involved in coordinating the shifts in metabolic fuel use associated with extreme survival strategies. Finally, an emphasis is given to the novel mitochondrial research areas of microRNAs, peptides, epigenetics, and gaseous mediators and their potential roles in facilitating hypometabolism. © 2018 IUBMB Life, 70(12):1260-1266, 2018.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.