Abstract

Liver receptor homolog (LRH-1) is an orphan nuclear receptor (NR5A2) that regulates cholesterol homeostasis and cell plasticity in endodermal-derived tissues. Estrogen increases LRH-1 expression conveying cell protection and proliferation. Independently, estrogen also protects isolated human islets against cytokine-induced apoptosis. Herein, we demonstrate that LRH-1 is expressed in islets, including β-cells, and that transcript levels are modulated by 17β-estradiol through the estrogen receptor (ER)α but not ERβ signaling pathway. Repression of LRH-1 by siRNA abrogated the protective effect conveyed by estrogen on rat islets against cytokines. Adenoviral-mediated overexpression of LRH-1 in human islets did not alter proliferation but conferred protection against cytokines and streptozotocin-induced apoptosis. Expression levels of the cell cycle genes cyclin D1 and cyclin E1 as well as the antiapoptotic gene bcl-xl were unaltered in LRH-1 expressing islets. In contrast, the steroidogenic enzymes CYP11A1 and CYP11B1 involved in glucocorticoid biosynthesis were both stimulated in transduced islets. In parallel, graded overexpression of LRH-1 dose-dependently impaired glucose-induced insulin secretion. Our results demonstrate the crucial role of the estrogen target gene nr5a2 in protecting human islets against-stressed-induced apoptosis. We postulate that this effect is mediated through increased glucocorticoid production that blunts the pro-inflammatory response of islets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.