Abstract

Despite the fact that the Little Ice Age (LIA) is well documented for the European Alps, substantial uncertainties concerning the regional spatio-temporal patterns of temperature changes associated with the LIA still exist, especially for their eastern sector. Here we present a high-resolution (4–10 years) 700-year long mean July air temperature reconstruction based on subfossil chironomid assemblages from a remote lake in the Austrian Eastern Alps to gain further insights into the LIA climatic deterioration in the region. The record provides evidence for a prolonged period of predominantly cooler conditions during AD 1530–1920, broadly equivalent to the climatically defined LIA in Europe. The main LIA phase appears to have consisted of two cold time intervals divided by slightly warmer episodes in the second half of the 1600s. The most severe cooling occurred during the eighteenth century. The LIA temperature minimum about 1.5 °C below the long-term mean recorded in the mid-1780 s coincides with the strongest volcanic signal found in the Greenland ice cores over the past 700 years and may be, at least in part, a manifestation of cooling that followed the long-lasting AD 1783–1784 Laki eruption. A continuous warming trend is evident since ca AD 1890 (1.1 °C in 120 years). The chironomid-inferred temperatures show a clear correlation with the instrumental data and reveal a close agreement with paleotemperature evidence from regional high-elevation tree-ring chronologies. A considerable amount of the variability in the temperature record may be linked to changes in the North Atlantic Oscillation.

Highlights

  • One of the most pressing environmental concerns facing society today is climate change (IPCC 2014)

  • The Little Ice Age (LIA) cooling, was not continuous and uniform in space and time. It was heterogeneous in terms of its precise timing and regional dimension and this heterogeneity may be masked in climate reconstructions on a larger spatial scale (Matthews and Briffa 2005; PAGES 2k Consortium 2013)

  • A closer examination of LIA temperature records at various sites is needed to gain a deeper insight into the LIA climate variability at regional scales that is more relevant for ecosystems and human populations than globally averaged conditions

Read more

Summary

Introduction

One of the most pressing environmental concerns facing society today is climate change (IPCC 2014). The LIA cooling, was not continuous and uniform in space and time. It was heterogeneous in terms of its precise timing and regional dimension and this heterogeneity may be masked in climate reconstructions on a larger spatial scale (Matthews and Briffa 2005; PAGES 2k Consortium 2013). A closer examination of LIA temperature records at various sites is needed to gain a deeper insight into the LIA climate variability at regional scales that is more relevant for ecosystems and human populations than globally averaged conditions

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.