Abstract

Load balancing is one of the central problems that have to be solved in parallel computation. Here, the problem of distributed, dynamic load balancing for massive parallelism is addressed. A new local method, which realizes a physical analogy to equilibrating liquids in multi-dimensional tori or hypercubes, is presented. It is especially suited for communication mechanisms with low set-up to transfer ratio occurring in tightly-coupled or SIMD systems. By successive shifting single load elements to the direct neighbors, the load is automatically transferred to lightly loaded processors. Compared to former methods, the proposed Liquid model has two main advantages. First, the task of load sharing is combined with the task of load balancing, where the former has priority. This property is valuable in many applications and important for highly dynamic load distribution. Second, the Liquid model has high efficiency. Asymptotically, it needs O(D . K . Ldiff ) load transfers to reach the balanced state in a D-dimensional torus with K processors per dimension and a maximum initial load difference of Ldiff . The Liquid model clearly outperforms an earlier load balancing approach, the nearest-neighbor-averaging. Besides a survey of related research, analytical results within a formal framework are derived. These results are validated by worst-case simulations in one-and two-dimensional tori with up to two thousand processors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.