Abstract
It is well known that every scalar convex function is locally Lipschitz on the interior of its domain in finite dimensional spaces. The aim of this paper is to extend this result for both vector functions and set-valued mappings acting between infinite dimensional spaces with an order generated by a proper convex cone C. Under the additional assumption that the ordering cone C is normal, we prove that a locally C-bounded C-convex vector function is Lipschitz on the interior of its domain by two different ways. Moreover, we derive necessary conditions for Pareto minimal points of vector-valued optimization problems where the objective function is C-convex and C-bounded. Corresponding results are derived for set-valued optimization problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.