Abstract

Hormone-sensitive lipase catalyzes the rate-limiting step in the release of fatty acids from triacylglycerol-rich lipid storage droplets of adipocytes, which contain the body’s major energy reserves. Hormonal stimulation of cAMP formation and the activation of cAMP-dependent protein kinase leads to the phosphorylation of hormone-sensitive lipase and a large increase in lipolysis in adipocytes. By contrast, phosphorylation of hormone-sensitive lipase by the kinase in vitro results in a comparatively minor increase in catalytic activity. In this study, we investigate the basis for this discrepancy by using immunofluorescence microscopy to locate hormone-sensitive lipase in lipolytically stimulated and unstimulated 3T3-L1 adipocytes. In unstimulated cells, hormone-sensitive lipase is diffusely distributed throughout the cytosol. Upon stimulation of cells with the β-adrenergic receptor agonist, isoproterenol, hormone-sensitive lipase translocates from the cytosol to the surfaces of intracellular lipid droplets concomitant with the onset of lipolysis, as measured by the release of glycerol to the culture medium. Both hormone-sensitive lipase translocation and lipolysis are reversed by the incubation of cells with the β-adrenergic receptor antagonist, propranolol. The treatment of cells with cycloheximide fails to inhibit lipase translocation or lipolysis, indicating that the synthesis of nascent proteins is not required. Cytochalasin D and nocodazole used singly and in combination also failed to have a major effect, thus suggesting that the polymerization of microfilaments and microtubules and the formation of intermediate filament networks is unnecessary. Hormone-sensitive lipase translocation and lipolysis were inhibited by N-ethylmaleimide and a combination of deoxyglucose and sodium azide. We propose that the major consequence of the phosphorylation of hormone-sensitive lipase following the lipolytic stimulation of adipocytes is the translocation of the lipase from the cytosol to the surfaces of lipid storage droplets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.