Abstract

Myelin is a membrane characterized by high lipid content to facilitate impulse propagation. Changes in myelin fatty acid (FA) composition have been associated with peripheral neuropathy [1], but the specific role of peripheral nerve FA synthesis in myelin formation and function is poorly understood. We explored the extent to which lack of the key regulator of FA synthesis as Sterol Regulatory Element Binding Factor-1c (Srebf-1c) could result in the development of peripheral neuropathy. We found that Srebf-1c null mice display a neuropathic phenotype consisting in hypermyelinated small caliber fibers, the result of changes in myelin periodicity. Unexpectedly, transcriptomics and metabolomics revealed activation of peroxisome proliferator activated receptor α (Pparα) signaling in Srebf-1c null peripheral nerve as a result of increased levels of two distinct phosphatidylcholine-based Pparα ligands, PC-C16:0/C18:1 and PC-C18:0/C18:1 [2, 3]. Pparα is a nuclear receptor that directs uptake, utilization and catabolism of FAs [4]. As a consequence of abnormal local Pparα activation, Srebf-1c null peripheral nerve exhibit increased fatty acid utilization, a detrimental condition leading to peripheral neuropathy. Treatment with a Pparα antagonist rescues the neuropathy of Srebf-1c null mice. These findings reveal the importance of FA synthesis to sustain peripheral nerve structure and function.

Highlights

  • Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia

  • The results of the present study indicate that development of the neuronal hypoxic tolerance induced by the three-trial, in contrast to one-trial, mild hypoxic preconditioning is apparently largely associated with the activation of CREB, as well as brain-derived neurotrophic factor (BDNF) and Bcl-2 overexpression

  • No significant differences in serum level of Solubile form of RAGE (sRAGE) where found between rapidly progressing and slow progressing subgroup of multiple sclerosis (MS) patients.Our results suggest for the role of sRAGE in MS ethiopathogenesis, but we did not find any association of sRAGE in serum with the rate of MS disability progression

Read more

Summary

Introduction

Alzheimer’s disease (AD) is an incurable neurodegenerative disease characterized by progressive dementia. The aim of the study was to characterize the effects of streptozocin (STZ)-indced diabetes on learning and memory of 5XFAD and wild-type (WT) mice in Morris water maze (MWM) at ages 2 and 6 months and on brain amyloid load. Existing evidence suggests GABAergic system is involved in pathophysiology of Alzheimer’s disease (AD) via inhibitory interneuron deficits (Verret et al, 2012) and decrease in functional GABAA receptors (Limon et al, 2012). Our concept: low doses of muscimol may prevent learning/memory deficits in intracerebroventricular (icv) streptozocin (STZ)-induced AD nontransgenic rat model. The Sigma-1 receptor is a chaperone protein that modulates intracellular calcium signalling of the endoplasmatic reticulum and is involved in learning and memory processes.The aim of the present study was to compare in vitro Ca2+ concentration modulating activity and in vivo behavioural effects of enantiomers of methylphenylpiracetam, a novel positive allosteric modulator of Sigma-1 receptors

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.