Abstract

Tumor metastasis is a major cause of cancer mortality. However, little is known regarding the regulation of abnormal cholesterol metabolism in hepatocellular carcinoma (HCC) metastasis. Here, we show that the expression of high-density lipoprotein binding protein (HDLBP), a lipid transporter, is clinically correlated with tumor metastasis in HCC patients. Moreover, HDLBP was required for cholesterol-induced HCC metastasis. We revealed that knockdown and overexpression of HDLBP significantly inhibited and enhanced, respectively, the metastasis, invasion and epithelial-mesenchymal transition (EMT) of HCC cells in vitro and in vivo. Mechanistically, coimmunoprecipitation and mass spectrometry screening uncovered BRAF as a protein target of HDLBP. HDLBP was found to promote EMT signaling in a BRAF-dependent manner. Furthermore, HDLBP interacts with BRAF and inhibits its ubiquitinated degradation by abrogating BRAF-ITCH interactions. Notably, further studies suggest that dabrafenib exhibited a greater metastasis-suppressive effect in HDLBP knockout HCC than isolated treatment. Overall, our findings imply that cholesterol-induced HDLBP contributes to the metastasis and invasion of HCC through BRAF-dependent EMT signaling and that HDLBP may be applied as a biomarker and therapeutic target for HCC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.