Abstract

Phage PR4 was grown on a variety of Escherichia coli mutants defective in fatty acid and phospholipid metabolism. The composition of the phage lipids was modified by changing the composition of the host membrane phospholipids. The compositions of both the polar and the acyl moieties of the phospholipids were altered. The proportion of saturated fatty acids in the phage phospholipids was increased in increments from 44% of the total fatty acids to 55%, 61% and 69% of the total fatty acids using a host mutant with a temperature-sensitive defect in unsaturated fatty acid biosynthesis. The increase in saturated fatty acids led to a pronounced loss of infectivity when the phage were incubated at temperatures between 2 degrees C and 30 degrees C (temperatures below those at which the phage were grown). The greater the level of saturated fatty acids in the phage phospholipids, the higher the temperature below which the phage were inactivated. Our results strongly suggest that the phage membrane undergoes a lipid phase transition, which can disrupt and inactivate the virion. The phospholipid composition of PR4 was also altered by using host mutants defective in phosphatidylethanolamine and/or cardiolipin synthesis. Phage PR4 grown on wild-type host strains contains 56% phosphatidylethanolamine, 37% phosphatidylglycerol, 4.6% cardiolipin and no detectable phosphatidylserine. However, in response to changes in the host, PR4 preparations were obtained with phospholipid compositions varying from 28% to 60% in phosphatidylethanolamine, from 22% to 39% in phosphatidylglycerol, from 1% to 15% in cardiolipin and containing as much as 35% phosphatidylserine. These changes in phospholipid composition did not affect the infectivity of the phage. Moreover, the increased level of phosphatidylglycerol in the phage relative to the host was not altered by these manipulations. It is concluded that the net charge of the phage membrane phospholipids is not involved in the selection or function of the viral phospholipids. We also present evidence suggesting that the phage and host membranes do not fuse during the course of infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.