Abstract

Abstract The eastern Pacific (EP) pattern is a recently detected atmospheric teleconnection pattern that frequently occurs during late winter. Through analysis of daily ERA-Interim data and outgoing longwave radiation data for the period of 1979–2011, it is shown here that the formation of the EP is preceded by an anomalous tropical convection dipole, with one extremum located over the eastern Indian Ocean–Maritime Continent and the other over the central Pacific. This is followed by the excitation of two quasi-stationary Rossby wave trains. Departing from the subtropics, north of the region of anomalous convection, one Rossby wave train propagates eastward along the East Asian jet from southern China toward the eastern Pacific. The second wave train propagates northward from east of Japan toward eastern Siberia and then turns southeastward to the Gulf of Alaska. Both wave trains are associated with wave activity flux convergence where the EP pattern develops. The results from an examination of the E vector suggest that the EP undergoes further growth with the aid of positive feedback from high-frequency transient eddies. The frequency of occurrence of the dipole convection anomaly increases significantly from early to late winter, a finding that suggests that it is the seasonal change in the convection anomaly that accounts for the EP being more dominant in late winter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.