Abstract

Abstract The link between Rossby wave breaking (RWB) and the four wintertime weather regimes over the North Atlantic domain is studied in this paper. Using the 40-yr ECMWF Re-Analysis (ERA-40) data, frequencies of occurrence of anticyclonic and cyclonic wave-breaking (AWB and CWB, respectively) events are computed. Each weather regime has its own characteristic pattern of RWB frequencies. CWB events are found to be most frequent for the Greenland anticyclone weather regime whereas AWB events occur more for the Atlantic ridge and the zonal regimes. Time-lagged composites show that the RWB events characterizing each weather regime occur more often during the formation of the regime rather than during its decay. This suggests a reinforcement of the weather regime by RWB. An exception is the blocking weather regime, which is destroyed by an increase of CWB events south of Greenland. Weather regime transitions are then studied using the low-frequency streamfunction tendency budget. Two types of precursors for the transitions have been identified. One is related to linear propagation of low-frequency transient eddies and the other to nonlinear interactions among the low- and high-frequency transient eddies. The latter has been related to the anomalous frequencies of occurrence of RWB. Two transitions are more precisely analyzed. The transition from blocking to Greenland anticyclone is triggered by a decrease of AWB events over Europe as well as a strong CWB event south of Greenland. The zonal to blocking transition presents evidence of two distinct precursors: one is a low-frequency wave train coming from the subtropical western Atlantic and the other, which occurs later, is characterized by a decrease of AWB and CWB events over western Europe that cannot continue to maintain the westerlies in that region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call