Abstract
In this article we study the linearized anisotropic Calderón problem. In a compact manifold with boundary, this problem amounts to showing that products of harmonic functions form a complete set. Assuming that the manifold is transversally anisotropic, we show that the boundary measurements determine an Fourier--Bros--Iagolnitzer-type transform at certain points in the transversal manifold. This leads to proving a uniqueness result for transversal singularities in the linearized problem. The method requires a geometric condition on the transversal manifold related to pairs of intersecting geodesics, but it does not involve the geodesic X-ray transform, which has limited earlier results on this problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.