Abstract

A polynomial expansion procedure and the ADO (analytical discrete-ordinates) method are used to solve a collection of basic flow problems based on the linearized Boltzmann equation for rigid-sphere interactions and the Cercignani–Lampis boundary conditions with a free choice of the accommodation coefficients at each boundary. In particular, three classical problems defined by flow in a plane-parallel channel (Poiseuille, thermal-creep, and Couette flow) are solved (essentially) analytically and evaluated to a very high numerical standard. Some comparisons with known kinetic models are also reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.